Latent HIV-1 infection of resting CD4⁺ T cells in the humanized Rag2⁻/⁻ γc⁻/⁻ mouse.

نویسندگان

  • Shailesh K Choudhary
  • Nancie M Archin
  • Manzoor Cheema
  • Noelle P Dahl
  • J Victor Garcia
  • David M Margolis
چکیده

Persistent human immunodeficiency virus type 1 (HIV-1) infection of resting CD4⁺ T cells, unaffected by antiretroviral therapy (ART), provides a long-lived reservoir of HIV infection. Therapies that target this viral reservoir are needed to eradicate HIV-1 infection. A small-animal model that recapitulates HIV-1 latency in resting CD4⁺ T cells may accelerate drug discovery and allow the rational design of nonhuman primate (NHP) or human studies. We report that in humanized Rag2⁻/⁻ γ(c)⁻/⁻ (hu-Rag2⁻/⁻ γ(c)⁻/⁻) mice, as in humans, resting CD4⁺ T cell infection (RCI) can be quantitated in pooled samples of circulating cells and tissue reservoirs (e.g., lymph node, spleen, bone marrow) following HIV-1 infection with the CCR5-tropic JR-CSF strain and suppression of viremia by ART. Replication-competent virus was recovered from pooled resting CD4⁺ T cells in 7 of 16 mice, with a median frequency of 8 (range, 2 to 12) infected cells per million T cells, demonstrating that HIV-1 infection can persist despite ART in the resting CD4⁺ T cell reservoir of hu-Rag2⁻/⁻ γ(c)⁻/⁻ mice. This model will allow rapid preliminary assessments of novel eradication approaches and combinatorial strategies that may be challenging to perform in the NHP model or in humans, as well as a rigorous analysis of the effect of these interventions in specific anatomical compartments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Humanized Rag1−/−γc−/− Mice Support Multilineage Hematopoiesis and Are Susceptible to HIV-1 Infection via Systemic and Vaginal Routes

Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2(-/-)γc(-/-), NOD/SCID, NOD/SCIDγc(-/-) and NOD/SCIDβ2m(-/-) strains. Transplantation of these mice with CD34(+) human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of an...

متن کامل

BLT-humanized C57BL/6 Rag2-/-γc-/-CD47-/- mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection.

The use of C57BL/6 Rag2(-/-)γc(-/-) mice as recipients for xenotransplantation with human immune systems (humanization) has been problematic because C57BL/6 SIRPα does not recognize human CD47, and such recognition is required to suppress macrophage-mediated phagocytosis of transplanted human hematopoietic stem cells (HSCs). We show that genetic inactivation of CD47 on the C57BL/6 Rag2(-/-)γc(-...

متن کامل

FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2-/-gammaC-/- mice in vivo.

The role of FoxP3(+)CD4(+) regulatory T (Treg) cells in HIV-1 disease in vivo is poorly understood due to the lack of a robust model. We report here that CD4(+)FoxP3(+) T cells are developed in all lymphoid organs in humanized Rag2(-/-)gammaC(-/-) (DKO-hu HSC) mice and they display both Treg phenotype and Treg function. These FoxP3(+) Treg cells are preferentially infected and depleted by a pat...

متن کامل

FoxP3 CD4 regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2

The role of FoxP3 CD4 regulatory T (Treg) cells in HIV-1 disease in vivo is poorly understood due to the lack of a robust model. We report here that CD4 FoxP3 T cells are developed in all lymphoid organs in humanized Rag2 / C / (DKO-hu HSC) mice and they display both Treg phenotype and Treg function. These FoxP3 Treg cells are preferentially infected and depleted by a pathogenic HIV-1 isolate i...

متن کامل

Highly Significant Antiviral Activity of HIV-1 LTR-Specific Tre-Recombinase in Humanized Mice

Stable integration of HIV proviral DNA into host cell chromosomes, a hallmark and essential feature of the retroviral life cycle, establishes the infection permanently. Current antiretroviral combination drug therapy cannot cure HIV infection. However, expressing an engineered HIV-1 long terminal repeat (LTR) site-specific recombinase (Tre), shown to excise integrated proviral DNA in vitro, may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2012